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Abstract--Diffusion in multicomponent systems is described by equations derived by Maxwell in 1866 
from the kinetic theory of gases and, independently, by Stefan in 1871 on the basis of hydrodynamic laws. 
These equations are called the Maxwell-Stefan equations. Their modern derivation is a matter of irreversible 
thermodynamics, or of statistical mechanics. In the present paper, the Maxwell-Stefan equations are 
obtained from the equation adopted by Fick in 1855 for diffusion in binary systems. In addition, it is 
demonstrated that the Maxwell-Stefan equations can also be derived from the classical Lagrange equations 
valid for a system of bodies undergoing energy dissipation. The energy dissipation in such a system is 
assumed to obey the dissipation function proposed by Lord Rayleigh in 1873. © 1997 Elsevier Science 

Ltd. All rights reserved. 

INTRODUCTION 

The mass transfer processes in many operations, such 
as condensation and evaporation of mixtures, or het- 
erogeneous chemical reactions, often govern the kin- 
etics of the overall process. An accurate modelling of 
the mass transfer tlhus becomes necessary and must be 
undertaken, particularly in multicomponent systems, 
using the Maxwell-Stefan equations [1-3]. These 
equations were developed by Maxwell [4] in 1866 from 
the kinetic theory of gases and by Stefan [5] in 1871 
from the laws of hydrodynamics. 

Maxwell [4] originally considered a binary mixture 
exposed to an action of external forces. One of the 
results he arrived at are the equations for diffusion of 
each component. Interactions between the com- 
ponents appearing in the equations are proportional 
to the relative aw',rage velocities of the components. 
The proportionality coefficients are identical for both 
components and include their partial densities. 

Stefan [5] gave an illustrative explanation for the 
interaction between the components, at first for a 
binary mixture, but in the same paper he extended the 
considerations to multicomponent systems. Accord- 
ing to Stefan, the ,diffusion of a particular component 
in a mixture of gases is viewed as follows : 

"In einem Gasgemenge erf~hrt jedes einzelne Theil- 
chen eines einfachen Gases, wenn es sich bewegt, von 
jedem anderen einfachen Gase einen Widerstand, wel- 
cher der Dichte dieses anderen Gases und der relativen 
Geschwindigkeit der beiden gegeneinander pro- 
portional ist."* 

In a multicomponent mixture, the resulting inter- 
action of a particular component with its neighbours 
is obtained by summing the binary interactions of this 
component. Thus, the Stefan view of the diffusion 
process is analogous to the Dalton law which 
expresses the total pressure of an ideal gas mixture as 
the sum of the partial pressures of the components. 

In a publication that appeared in 1877, in the 9th 
edition of the Encyclopaedia Britannica, Maxwell [6] 
discussed diffusion in a multicomponent gas mixture 
on the basis of hydrodynamic laws and gave, like 
Stefan in the above-mentioned paper, the following 
equation for the movement of component 1 : 

dUl 
~y -f~p~ + A~2plp2(ul -u2)  pl-~i- + 

+A13PlPa(U~--ua)+&c. = 0. (1) 

Here, p is the mass density, u the velocity with respect 
to a stationary co-ordinate system, p the pressure and 
f the external force acting per unit mass in the y direc- 
tion. The subscripts 1, 2 and 3 indicate the different 
components of the mixture, du/dt represents the sub- 
stantive change of the velocity, whereas Alz, A13 
denote interaction coefficients. In eqn (1), y is used 
instead of x, and A instead of C in the original 
Maxwell equation. The last term, &c., as borrowed 
from Maxwell's publication, stands for the sum of all 
the remaining binary interaction terms, that is, 

&c. = A14plp4(uj --u4)+ A15plps(ul --us)+ . . . . . .  

* "In a gas mixture, any single particle of a simple gas, if 
it moves, experiences from any other simple gas a resistance, 
which is proportio~al to the density of that other gas and 
the relative velocity of the gases". 

For steady state diffusion with a negligible con- 
vective change of the velocity ut, and without the 
action of external forces, eqn (1) reduces to 
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NOMENCLATURE 

A interaction (resistance) coefficient T 
a activity coefficient u 
c volumetric molar concentration V 
D diffusion coefficient in binary mixture t~ 
D diffusion coefficient in y 

multicomponent mixture Y 
E mechanical energy 
F dissipation function due to Lord 

Rayleigh 
f force per unit of mass, also fugacity 
G Gibbs free energy 
J diffusion flux per unit area 
L Lagrangian 
M molar mass j 
N amount of substance j k  

total molar flux per unit area k 
Q generalized force kin 
q generalized co-ordinate pot 
~' universal gas constant s 
t time 

temperature 
mean velocity 
volume 
partial molar volume 
co-ordinate 
molar fraction of component. 

Greek symbols 
kinetic (interaction) coefficient 

/~ chemical potential 
p volumetric mass density. 

Subscripts 
component j  
binary pair j -  k 
component k 
kinetic energy 
potential energy 
particular degree of freedom 

1,2 . . . .  component 1 ,2 , . . . .  

@, .L 
= ~ AlkPJpk(Ul--Uk), (2) 

C~y k= 1 

where the subscript k refers to an arbitrary component 
of the n mixture components. 

Replacing the subscript 1 in eqn (2) by a subscript 
j ,  regarding the relationship between the mass density 
and the molar concentration, further assuming both 
the total pressure and the temperature in the mixture 
to be constant and the mixture itself to be ideal, the 
relationship 

- c ~ -  = ~ =, Dj~c ~=, Djk (3) 

describing the diffusion of an arbitrary component j 
is obtained. Here, Y~, Yk, qj and ck are the molar 
fractions and concentrations of the componentsj  and 
k, hj and hk are the corresponding total fluxes, and c 
is the molar concentration of the mixture. The quan- 
tity Djk, representing the ratio 

~ T  
Dik = AjkMjMkc' (4) 

assumes the nature of a binary diffusion coefficient in 
a multicomponent mixture [7]. 

Equation (3) is regarded as the most useful 
expression of the Maxwell-Stefan equation at both 
constant pressure and temperature of an ideal 
mixture. For  a mixture of n components, there are 
n -  1 such independent equations. 

In the current literature, the Maxwell-Stefan equa- 
tion is usually derived from the postulates of irre- 
versible thermodynamics, e.g. ref. [8]. Elementary 

considerations of transport processes within the 
molecular theory leading to the Maxwell-Stefan equa- 
tion are for example given in refs. [9-11], and approxi- 
mations of higher-orders in refs. [12, 13]. This equa- 
tion has meanwhile been generalized to include co- 
operative phenomena arising from gradients of 
different physical properties, such as concentration, 
temperature, etc., e.g. refs. [14, 15]. The gen- 
eralizations are mostly based on the well-known 
hypothesis proposed in 1931 by Onsager [16, 17], who 
is, as noted in numerous references, considered to be 
the founder of a theory of transport processes occur- 
ring in systems undergoing irreversible trans- 
formations. Onsager's theory starts from the entropy 
balance with a source term corresponding to a slightly 
modified expression for energy dissipation proposed 
by Lord Rayleigh and leads to a linear relationship 
between forces and fluxes. 

It is noteworthy, however, that the transport theory 
of irreversible processes based on the entropy balance 
has been worked out prior to the Onsager publication, 
probably for the first time, by Jaumann [18] in 1911, 
and refined by Lohr [19] in 1917. The transport equa- 
tions developed and analysed by Jaumann include the 
entropy generation associated with several processes 
occurring simultaneously. Thus, they account for the 
interactive phenomena in a mutually non-homo- 
geneous system. Although the Jaumann theory has 
been overlooked, or simply ignored, it is, however, 
not only of historical interest, but also because of  its 
completeness. 

The aim of the present paper is twofold. Firstly, it 
will be shown that the Maxwell-Stefan equation can 
be derived from the well-known Fick equation valid 
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for binary mixtures. A simple rearrangement of the 
Fick equation elaables its extension to mul- 
ticomponent mixtures. Furthermore, it should be 
demonstrated that the Maxwell-Stefan equation can 
also be deduced directly from the classical Lagrange 
equation describing the movement of a system of 
bodies, if the energy dissipation within the system is 
assumed to obey the Rayleigh dissipation function. 

For  reasons of simplicity, the considerations are 
restricted to ordinary isothermal and steady-state one- 
dimensional diffusion without action of external 
forces. Interaction phenomena which can arise from 
gradients of different physical quantities are thus 
excluded. 

The present con,;iderations may perhaps appear to 
be old-fashioned in comparison with recent works, 
some of which are cited here. However, the pub- 
lication seems to be justified because of the simplicity 
of the method used. 

DERIVATION OF THE MAXWELL-STEFAN 
EQUATION FROM THE FICK EQUATION 

We consider an inhomogeneous binary mixture 
composed of components j and k. The ordinary 
diffusion of each component in such a mixture usually 
obeys the Fick [20] equation, that relates the diffusion 
flux J of one component, for example of component 
j ,  to the corresponding concentration*, 

J+ = -- DjkC ~2yJ. (5) 

The symbols in this equation correspond to those of 
eqn (3), Djk is consequently the diffusion coefficient in 
a binary system. 

As Fick noted in his paper [20], the diffusion of one 
component causes a countercurrent movement of the 
other one at an equal volumetric flow rate. This verbal 
statement of Fick is now usually expressed by the 
relationship 

k 

i~Jj = 6jJj + ~TkJk = 0, (6) 
j=j 

which, according to current terminology, shows that 
the Fick diffusion occurs relative to the volume-aver- 
age velocity. In eqn (6), ~ and #k are the partial molar 
volumes of  the components. 

To derive the Maxwell-Stefan equation from the 
Fick eqn (5), we combine the latter with the Stefan 
equation, 

* A relationship as expressed by eqn (5) does not exist in 
Fick's publication. Fick [20] only mentioned that the 
diffusion process is analogous to heat conduction obeying 
the Fourier law and derived an equation for the instationary 
concentration distribution, which is now known as the Fick 
second law. Fick's balance equation, however, leads immedi- 
ately to eqn (5). In this context, it should be mentioned that 
Fick originally used in his derivations the gradient of the 
partial density instead of the mole fraction of the component. 

ftj = Jj + Yj~, (7) 

that relates the diffusion flux Jj to the total flux i*j of 
the component j and the total flux i* of the mixture 
[7]. Equations (5) and (7) yield: 

~r j  n , -  Yji* 
- c  (8) Oy D/k 

The flux C is now multiplied by Yj+ Yk = 1, and the 
total flux i* is replaced by ~ = C+n~. The numerator 
on the right-hand side of eqn (8) can thus be written 
a s  

+-- Y/* = nj(E + Y~)- Y j ( i * / + i * k )  

k k k 

= i*j Y~ L - Yj X i** = Y~ ( L i * J -  Yj~). (9) 
k = j  k = j  k = j  

Combining eqns (8) and (9), we arrive at the 
expression 

cOY/ ~, Y,i*j- Yji*k Y*nJ- YJi** (101 
- ' 

which is the Fick equation for a binary mixture written 
in the common form of the Maxwell-Stefan equation. 
According to this equation, the spatial change of the 
fraction Yj is only caused by the interactions between 
the molecules of different species, the interactions 
between the molecules of the same component are 
thus disregarded by this relationship. 

The eqn (10) is similar to the equation describing 
the movement of a body within an isolated system 
of bodies. As discussed in many sources of classical 
mechanics, for example in ref. [21], the momentum 
change of such a body is caused by its interactions 
with all the other bodies of the system. 

If we now identify the component j in a mul- 
ticomponent mixture as a particular body of the mech- 
anical system, we recognize that the movement of this 
species is governed by its binary interactions within 
the mixture. Thus, the change of the fraction Yj of the 
component j will depend on all these interactions. 
Considering the binary interactions as independent 
from each other, that is, as being caused by a change 
of the potential of each component of the mixture 
relative to the component j,  we may sum up all the 
binary interactions according to the right-hand side 
of eqn (10) to obtain the derivative dY/Oy in a mul- 
ticomponent mixture, k = 1,2 . . . .  ,n. Such a pro- 
cedure immediately leads to the Maxwell-Stefan 
equation, noted above as eqn (3). By doing this, the 
question whether the binary interactions in the actu- 
ally binary and in the multicomponent system are the 
same needs to be considered. In cases where these 
interactions are different from each other, the 
diffusion coefficient Djk in eqn (10) has to be replaced 
by Dj~. 

The expansion of the Fick equation to the Maxwell- 
Stefan equation illustrated here is an "a  posteriorz" 
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derivation and the associated explanations do hardly 
allow new insights into the diffusion process. 

8aj + 86 
fffy ~ = 0 (13) 

THE LAGRANGE EQUATION AS A BASIS FOR 
THE MAXWELL-STEFAN EQUATION 

In this section, we show how the Maxwell-Stefan 
equation can be derived from the Lagrange equation 
when the energy dissipation in the system obeys the 
Rayleigh dissipation function. The Lagrange equation 
of classical mechanics describes the movement of a 
system of material points from the laws of energy 
conversion. For a non-conservative system with a dis- 
sipation of mechanical energy, this equation takes the 
form [22] 

d / 0 L \  0L 0F 

where t is the time, F is the Rayleigh dissipation func- 
tion, q is the generalized coordinate, O~ = dqffdt is 
the corresponding generalized velocity, and L the so- 
called Lagrangian that expresses the difference 
between the kinetic and the potential energy of the 
system, 

Z = Eki n --Epo '. (12) 

The subscript s in eqn (1 l) refers to a particular 
degree of freedom of the system, Q~ is the cor- 
responding generalized force, which is not contained 
in L, or F. The number of equations is determined 
by the number of degrees of freedom. To apply the 
Lagrange equation to diffusion in a multicomponent 
mixture, we consider the components of the mixture 
as subsystems of a mechanical system. The diffusion 
movement of the components is assumed to be very 
slow so that the kinetic energy may be neglected, 
Eke, = 0. 

The potential energy Epo, of the system is a complex 
function of the system configuration, that is, of the 
distribution of the components in the mixture. An 
estimation of this energy thus requires the knowledge 
of the micro-state of the system considered which is 
a matter of molecular mechanics. However, from a 
macroscopic point of view, the potential energy Er,o, 
of a mechanical system, or of  its parts, being capable 
of a total conversion into other forms of  energy, is 
identical to the Gibbs free energy G of a ther- 
modynamic system, Epo, = G. The Gibbs free energy 
of a system in the state of equilibrium can be deter- 
mined from the macroscopic state quantities accord- 
ing to thermodynamic relations. 

The Lagrange eqn (11) is valid for the total system 
and its parts as well. Thus, we may apply this equation 
to each mixture component which is considered as a 
subsystem subject to actions of forces arising from the 
remaining subsystems of the total system. Without the 
action of additional forces (Q~ = 0), the Lagrange eqn 
(11) applied to one-dimensional diffusion of an arbi- 
trary component j  (q~ = y, q~ = u) becomes 

where uj is the average velocity of the component j in 
the y direction with respect to a stationary co-ordinate 
system. 

The dissipation function F introduced by Rayleigh 
[23] represents half the rate at which the mechanical 
energy is dissipated. It thus balances the conversion 
of the potential into the kinetic energy occurring in a 
dissipative system, and vice versa. Adapted to our 
purpose, the dissipation function F for the diffusing 
component j  takes the form 

1 " 
Fj = ~k~= l Cejk(Uj--Uk) 2, (14) 

wherein the kinetic coefficients ~jk of the binary inter- 
actions depend, as Rayleigh pointed out, on the con- 
figuration of  the system, but not on the velocities uj 
and uk. 

To obtain the change of the free energy OG/Oy in 
eqn (13), we assume a local equilibrium in the non- 
homogeneous system. We then determine the work 
gained, if an amount 6Nj of the component j is moved 
along the distance dy from a region where the chemical 
potential is pj to a neighbouring region where the 
chemical potential is #j-(Olafl@)dy. This work 
coincides with the change of the Gibbs free energy 
and we get, at constant temperature and pressure in 
the mixture, the relationship 

8G~oy ~6Nj .  (15) 

Using eqns (14) and (15), eqn (13) can be written as 

6Nj+k~=, c~jk(U/-- uk) = 0. (16) 

The binary coefficients ~j~ may be determined on 
the basis of the reasoning proposed by Stefan [5] in 
connection with the coefficients Ajk in eqn (1). Accord- 
ing to him, the interactions between the components 
depend on the number of particles of the component 
k in the volume element 6 V and the concentration cj 
of the componentj .  Since the number of the particles 
k is proportional to the concentration Ok, we may 
expect a proportionality of the form ajk ~ cjck6 V, or 

o{ik = A~cjc~(SV (17) 

with A~ as the binary interaction coefficient account- 
ing for the resistance of diffusional movement of the 
component j with respect to the component k. 

Regarding the relationship 6Nj = cfiV= YscrV, 
eqns (16) and (17) yield 

~_~ cjck - Yj = ~ A~ ~-(uj--uk), (18) 
k = l  

which, after a multiplication by c/(~lT), gives 
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Yjc O#j _ ~, CsCk(Uj--Uk) 
(19) 

~ T  Oy ~/~= , Djkc 

The diffusion coefficient Djk in this equation is given 
by 

~ T  
Djk -- A~c '  (20) 

where the coefficient A~ is related to Ajk in eqn (4) by 
A~ = AjkMjM~. 

Equation (19) is a general expression of the 
Maxwell-Stefan equation for diffusion of a com- 
ponent j in a multicomponent system. It does not 
account for the co-operative phenomena that may 
arise from gradients of different physical quantities. 

The chemical potential #j is given by 

klj = #o + ~ T l n a j ,  (21) 

where #~ is the reference potential and aj is the activity 
coefficient representing the ratio of the fugacities, 
aj = f j / jo,  wherefj is the actual fugacity a n d f  ° that in 
the reference state. For an ideal mixture, we have 
f j  = y j o  and the Maxwell-Stefan relationship (3) is 
obtained from eqns (19) and (21). 

CONCLUSIONS 

This paper deals with the diffusion in mul- 
ticomponent systems. The equations describing the 
diffusion processes in such systems were derived in 
1866 by Maxwell and, independently, in 1871 by 
Stefan. These equations are called the Maxwell-Stefan 
equations. 

The Maxwell-Stefan equations can, as shown in the 
paper, be derived from the Fick equation, valid for 
the diffusion in binary systems. A simple rearrange- 
ment of the Fick equation allows its extension to mul- 
ticomponent systems. This extension is based on an 
analogy between the diffusion of an arbitrary com- 
ponent in the mixture and the movement of a body 
within an isolated system of bodies. 

In addition, it i:s demonstrated in the paper that the 
Maxwell-Stefan ,equation follows directly from the 
classical Lagrange equation, valid for a non-con- 
servative system of bodies. The irreversible energy 
conversion in such a system has been assumed to obey 
the Rayleigh dissipation function. 
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